Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

3-Diphenylphosphino-1,2:5,6-di-O-isopropylidene-4-O-methyl-1D-chiro-inositol

Graeme J. Gainsford,* Cornelis Lensink and Andrew Falshaw

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand Correspondence e-mail: g.gainsford@irl.cri.nz

Received 13 September 2006
Accepted 20 September 2006
Online 19 October 2006
The novel title compound, $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{P}$, contains rigid fused rings which are shown to be similar to the precursor structures. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions produce twodimensional sheets composed of $R_{4}^{4}(28)$ rings.

Comment

This study is part of a programme aimed at generating new hydrogenation catalyst ligands (Gainsford et al., 2005). No monophosphinite ligands based on isopropylideneinositols have been reported previously.

(I)

The asymmetric unit of the title compound, (I), contains one independent 3-diphenylphosphino-1,2:5,6-di- O-isopropy-lidene-4- O-methyl-1d-chiro-inositol molecule (Fig. 1). The chemically determined absolute configuration (S, R, R and S for C2, C3, C4 and C5, respectively) was confirmed by the refinement. There are two reported di- O-isopropylidene-chiro-inositol structures [Cambridge Structural Database (CSD; Allen, 2002); another d enantiomer (CSD refcode HOFLOD; Falshaw et al., 1999) and a substituted l enantiomer (refcode IPRTIN; McConnell et al., 1972)]. Two other isoprolylidene-myo-inositol structures, viz. refcodes PINMII (Chung et al., 1994) and NAGZOL (Sureshan et al., 2004), are known, while another 1,2:5:6-di- O-isopropylidene-4-methyl-1D-chiro-inositol, hereafter (II), has also been resolved by us (Falshaw et al., 2006).

The $\mathrm{P}-\mathrm{O}$ bond length (Table 1) is similar to that found in two diphenylphosphinite ephedrine compounds [refcodes DERLEQ and DERKIU, with 1.666 (6) and 1.640 (2) \AA, respectively; Brunet et al., 1999], while the $\mathrm{P}-\mathrm{O}-\mathrm{C}$ angle is larger than that of the closest ring analogue (refcode MUKREP; Nazarov et al., 2002), which has a $\mathrm{P}-\mathrm{O}-\mathrm{C}$ angle of $117.24(10)^{\circ}$ and a $\mathrm{P}-\mathrm{O}$ distance of 1.6617 (12) \AA. The torsion angles involving the $\mathrm{Ph}_{2} \mathrm{PO}$ link [e.g. $\mathrm{C} 14-\mathrm{P} 1-\mathrm{O} 3-$ $\left.\mathrm{C} 3=-124.59(12)^{\circ}\right]$ are also similar to those of the latter compound $\left[-129.40(11)^{\circ}\right]$. Other dimensions are normal.

The inositol ring adopts a twist-boat conformation with $Q=$ 0.6739 (17) $\AA, \theta=93.86(15)^{\circ}$ and $\varphi=340.19$ (15) ${ }^{\circ}$ (Cremer \& Pople, 1975). This is quite different from the skew-boat found for the tosylated (L) derivative (refcode IPRTIN). The two isopropylidene rings have slightly different conformations; $\mathrm{C} 1 /$ $\mathrm{O} 1 / \mathrm{C} 7 / \mathrm{O} 2 / \mathrm{C} 2$ is best described as an envelope on C 2 , while the puckered C5/O5/C10/O6/C6 ring adopts a twisted form on C10-O5 (Evans \& Boeyens, 1989). Comparison with (II) and

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 30% probability level.

Figure 2
The main intermolecular packing interactions in (I), viewed down the b axis. Only H atoms and labels of one set of atoms in the $R_{4}^{4}(28)$ rings are shown (see Comment). Symmetry codes are as in Table 2.

HOFLOD shows that the 5,6-di- O-isopropylidene-chiroinositol ring structure is quite rigid with only some minor changes in the interplanar angles of the average mean planes through the rings and the twist about $\mathrm{O} 1-\mathrm{C} 1$ (Table 3).

The packing is stabilized mainly by two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, described according to Bernstein et al. (1995) (see Table 2), viz. entry 1, which forms a $C(6)$ chain running parallel to the a axis, and entry 2 , which forms a $C(10)$ chain running parallel to the c axis, generated by the screw axis at $\left(\frac{3}{4}, \frac{1}{2}, z\right)$. Together, these interactions form two-dimensional sheets composed of $R_{4}^{4}(28)$ rings (Fig. 2). One weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction provides a possible interaction in the third dimension (entry 3 in Table 2, where $C g 1$ is the centroid of phenyl ring $\mathrm{C} 20-\mathrm{C} 25$). Other weaker intra- and intermolecular interactions (entries 4-6) are listed for completeness.

Experimental

A solution of $\mathrm{Ph}_{2} \mathrm{PCl}(468 \mathrm{mg}, 2.12 \mathrm{mmol})$ in tetrahydrofuran (5 ml) was added dropwise to a magnetically stirred solution of $1,2: 5,6-\mathrm{di}-\mathrm{O}$ -isopropylidene-3-O-methyl-1d-chiro-inositol ($582 \mathrm{mg}, \quad 2.12 \mathrm{mmol}$) and pyridine ($0.32 \mathrm{~g}, 4 \mathrm{mmol}$) dissolved in tetrahydrofuran (10 ml) at

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

P1-O3	$1.6541(12)$	$\mathrm{O} 1-\mathrm{C} 7$	$1.4567(19)$
P1-C14	$1.8286(17)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.4372(18)$
$\mathrm{P} 1-\mathrm{C} 20$	$1.8329(18)$	$\mathrm{O} 6-\mathrm{C} 10$	$1.404(2)$
O3-P1-C14	$100.97(7)$	$\mathrm{C} 14-\mathrm{P} 1-\mathrm{C} 20$	$100.25(8)$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{C} 20$	$97.85(7)$	$\mathrm{C} 3-\mathrm{O} 3-\mathrm{P} 1$	$120.41(10)$
C14-P1-O3-C3	$-124.59(12)$	$\mathrm{P} 1-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$-133.05(11)$
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$158.37(13)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	$-60.63(16)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {i }}$	1.00	2.53	3.474 (2)	158
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 1^{\text {ii }}$	0.95	2.60	3.377 (2)	139
C $9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{Cg} 1^{\text {iii }}$	0.98	2.84	3.573 (2)	133
C16-H16 $\cdots{ }^{\text {O }}{ }^{\text {ii }}$	0.95	2.70	3.391 (2)	131
C13-H13C..O5	0.98	2.59	3.215 (3)	122
C25-H25 . ${ }^{\text {O }} 3$	0.95	2.49	2.899 (2)	106

room temperature. The reaction mixture was stirred for 1 h at room temperature. The solvent was removed under high vacuum. Toluene $(10 \mathrm{ml})$ was added and the mixture was filtered through neutral alumina. Removal of the solvents under high vacuum yielded (I) $(0.84 \mathrm{~g}, 1.83 \mathrm{mmol}, 87 \%)$ as a white solid. $[\alpha]_{D}=+12.2^{\circ}$ (c 0.5, CHCl_{3}). Analysis calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{P}: \mathrm{C} 65.49, \mathrm{H} 6.82 \%$; found: C 66.06, H 6.78\%.

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{P}$	$Z=4$
$M_{r}=458.47$	$D_{x}=1.238 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, $P_{1} 2_{1} 2_{1} 2_{1}$	$\mathrm{Mo} \mathrm{K} \mathrm{\alpha}$ radiation
$a=5.7381(5) \AA$	$\mu=0.15 \mathrm{~mm}^{-1}$
$b=19.5148(16) \AA$	$T=166(2) \mathrm{K}$
$c=21.9735(18) \AA$	Needle, colourless
$V=2460.5(4) \AA^{3}$	$0.81 \times 0.25 \times 0.12 \mathrm{~mm}$
Data collection	
Siemens $P 4 \mathrm{CCD}$ area-detector	31585 measured reflections
\quad diffractometer	5014 independent reflections
φ and ω scans	3486 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.049$
\quad (Blessing, 1995)	$\theta_{\max }=26.4^{\circ}$
$\quad T_{\text {min }}=0.743, T_{\text {max }}=0.979$	

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \left.w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0293 P)\right)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \AA^{-3} \\
& \Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 2109 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.06(7)
\end{aligned}
$$

All H atoms were constrained to their expected geometries ($\mathrm{C}-$ $\mathrm{H}=0.95,0.98$ and $1.0 \AA$) and refined with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}$ of the parent atom. The methyl H atoms were additionally allowed to rotate freely about the parent $\mathrm{C}-\mathrm{C}$ bonds.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor Ward T. Robinson and Dr J. Wikaira of the University of Canterbury for their assistance.

[^0]Table 3
Torsion and interplanar angles $\left({ }^{\circ}\right)$ for related structures ${ }^{a}$.

Source b	$\varphi 1$	$\varphi 2$	$\varphi 3$	$\varphi 4$	A_{12}	A_{23}	A_{13}
This work	$158.37(13)$	$-100.61(15)$	$151.95(15)$	$-128.73(16)$	$14.93(10)$	$32.01(10)$	$46.70(9)$
(II)	$158.8(2)$	$-110.0(2)$	$153.8(2)$	$-129.3(2)$	$10.06(15)$	$30.85(14)$	$40.90(14)$
HOFLOD B	$158.7(7)$	$-110.7(8)$	$150.9(8)$	$-128.0(8)$	$10.8(5)$	$28.0(5)$	$37.2(5)$
HOFLOD C	$154.3(8)$	$-119.4(8)$	$150.4(7)$	$-136.2(9)$	$9.6(6)$	$30.1(5)$	$39.7(5)$

Notes: (a) $\varphi 1$: $\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3 ; ~ \varphi 2$: $\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6 ; ~ \varphi 3$: $\mathrm{C} 10-\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 4 ; ~ \varphi 4$: $\mathrm{C} 10-\mathrm{O} 6-\mathrm{C} 6-\mathrm{C} 1 ; A_{n m}$: angles between mean planes (nm) through (1) $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{O} 2 / \mathrm{C} 7$, (2) $\mathrm{C} 6 / \mathrm{O} / \mathrm{C} 10 / \mathrm{O} / \mathrm{C} 5$ and (3) $\mathrm{C} 1-\mathrm{C} 6$. (b) B and C signify two independent molecules.

organic compounds

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brunet, J.-J., Chauvin, R., Chiffre, J., Donnadieu, B., Huguet, S., Leglaye, P. \& Mothes, E. (1999). Inorg. Chim. Acta, 291, 300-310.
Chung, S.-K., Ryu, Y., Chang, Y.-T., Whang, D. \& Kim, K. (1994). Carbohydr. Res. 253, 13-18.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Evans, D. G. \& Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
Falshaw, A., Gainsford, G. J. \& Lensink, C. (1999). Acta Cryst. C55, 1353-1355.
Falshaw, A., Gainsford, G. J. \& Lensink, C. (2006). Acta Cryst. E62. In preparation.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gainsford, G. J., Falshaw, A., Lensink, C. \& White, S. (2005). Book of Abstracts, XXth Congress of the IUCr, Florence, Italy. Abstract MS80.298.5, p. C102.

McConnell, J. F., Angyal, S. J. \& Stevens, J. D. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 2039-2044.
Nazarov, A. A., Hartinger, C. G., Arion, V. B., Giester, G. \& Keppler, B. K. (2002). Tetrahedron, 58, 8489-8492

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sureshan, K. M., Mukami, T., Miyasou, T. \& Watanabe, Y. (2004). J. Am. Chem. Soc. 126, 9174-9175.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: RB3020). Services for accessing these data are described at the back of the journal.

